在湿热试验中,温度和湿度共同作用,会形成一些物理现象并使样品表面或内部受潮。
1、吸附现象:
气体分子(在湿热试验中指水蒸气分子)在空间运动时可能碰撞固体物质(样品)的表面,当一定数量的分子连续碰在固体表面,在它重新回到空间之前,要在固体(样品)表面“停留”一定长的时间。这时,气体在表面上的浓度高于它在空间中的浓度,从而产生凝结。这种气体在固体表面上“停留”的现象称之为吸附。因此,吸附也可以说是气体在固体表面上凝结和蒸发的一个中间过程。根据实验结果,气体吸附量与固体物质的性质、温度及平衡时气体的压力三者有关。温度愈低、压力愈高,则吸附量就愈大。(感兴趣的同学可以去研究一下函数关系式)
物理吸附是由范德华引力引起的,吸附层一般为多分子层。吸附速度较快,吸附时所需能量也较小,一般在低温下便能进行。在湿热试验中以物理吸附现象居多。
2、凝露现象:
凝露实际上也是水分子在样品上的吸附现象,但它是在试验温度上升时产生的。在升温阶段,样品表面温度低于周围空气露点温度时,水蒸气便会在样品表面凝结成液体形成水珠。在交变湿热试验的升温阶段,由于样品的热惯性,使它的温度上升滞后于试验箱的温度。因此,表面便产生了凝露现象。这种表面凝露量的多少,取决于样品本身的热容量大小,以及升温速度和升温阶段的相对湿度,在交变湿热试验的降温阶段,封闭外壳的内壁也会出现凝露现象。
3、扩散现象:
扩散是分子运动的一种物理现象。在扩散过程中,分子总是从浓度大的地方迁移到浓度小的地方。湿热试验时,空气中水蒸气向浓度较低的材料内部扩散的速度可以用菲克定律表示出来。所以,湿热试验中由扩散引起的潮气侵入,除了取决于试验条件中的绝对湿度与温度,还与样品的材质有关。
4、吸收现象(也称为流通现象)。
水蒸气进入材料内,一般都是通过空隙。水蒸气通过间隙的速度取决于孔的尺寸。如果孔隙的尺寸小于水分子的直径,水蒸气便不能进入。由于水蒸气在空间是与空气混合存在的,所以它的进入速度与水蒸气和空气的混合比例也有很大关系。将水蒸气和空气比例为1:1时,相当于80℃空气饱和状态下的水气量作为界限。高于这个界限的称为高蒸气压力,低于这个界限的称为低蒸气压力,然后将水蒸气进入空隙的机理分别进行讨论:
①低蒸气压力下水气进入机理:在温度和水蒸气压力都不变的情况下(相当于恒定湿热试验),水蒸气进入空隙主要是由于扩散作用,其速度主要取决于空隙中的空气阻力(渗透系数)和空隙尺寸(空隙的大小虽然也影响进入速率,但并不严重)。当温度变化(相当于交变湿热试验)时,空隙两边的水蒸气压力差强迫含有水蒸气的空气通过。这时进入速率不但与空隙阻力和空隙尺寸有关,还与空隙两端的水蒸气压力差也有关。由此可见,恒定湿热试验与交变湿热试验的作用机理是不一样的。
②高蒸气压力条件下,水蒸气进入速度与空隙直径有关,当空隙直径小于水分子的平均自由路程时,水蒸气进入为分子流;当空隙直径大于平均自由路程时,进入速度为粘性流,空隙直径处于上述二者之间时为过渡流。在高蒸气压力下,水蒸气进入速度随空隙大小变化说明,如果提高温度来加速潮气进入,对不同空隙尺寸将会有不同的速率,其加速倍数将是不一样的。
综上所述,水蒸气通过吸收现象的进入,取决于温度和水蒸气压力(绝对湿度)及材料的材质。
5、呼吸作用:
我们将封闭样品内空腔中温度变化引起的内外空气交流,称之为呼吸作用。在交变湿热试验的降温阶段,由于温度急剧下降,引起封闭空腔内的空气温度下降或空腔内壁的凝露都会使腔内压力降低,形成抽吸现象,吸入外界的潮湿空气,因此,降温阶段的呼吸作用吸入潮气量的多少,与温度变化速率和绝对湿度有关。这种呼吸现象不仅仅发生在试验温度交变时,当具有封闭外壳的样品,如封闭型旋转电机在间歇运动过程中,壳内线圈发热或冷却的反复交替变化,也会发生呼吸作用。在潮湿条件下使用的电机产品,由于这种呼吸作用吸入潮气,长期凝结成水在壳内积聚起来,也是屡见不鲜的。